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@ GE Global Research  The Nanotechnology Challenge

“The Nanoworld is a weird borderland
between individual molecules and the
Biotech macroworld.”

|magin9 Scientific American, 9/01
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%’fl‘ Too Many Opportunities: Where do we start?



@ GE Global Research — Nanotechnology Opportunities in GE

GE Technology...

« Saving Energy & the

Environment

» GE Aircraft Engines, GE Power @& !
Systems, GE Specialty Materials,
GE Industrial Systems, GE
Transportation

* Household Innovations

» GE Consumer Products, GE
Plastics

* The Future of Healthcare
» GE Medical Systems



(46 GE Global Research Why is GE Investing in Nanotechnology?

Higher
Thrust to
Weight
Ratio
Engines

] Aircraft
of Nano Improve
EICHELS P

Nanotechnology will Create a Step
Change in the Technology Trend

""""""""""""""""""""""""""""""""""""""""""""""""""""""""" Land Based
Turbines

Current Industry Technology Trend: Evolutionary

TEMPERATURE, STRENGTH, LIFE

Increased
- - Diagnostic
Large Effort for Small Gains Speed for
Medical
Systems
|
Today Medical
Systems

All of the GE Businesses will benefit from the current investments being
made in nanomaterials and nanotechnology
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NanoMaterials

Nanotubes & Nanowires

Platform
Leverage existing & invent novel
materials In targeted application
areas

Magnetlc Nano-Particles

Platform

Develop expertise in
functionalized magnetic nano-
particles via contrast agents for
MRI

X

stabilized stable
magnetic magnetic MR contrast
nanocrystal nanoparticle agent
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GE’s Nanotechnology Program

Ordered NanoStructures

Hybrid Materials Platform
Exploit self-assembly to
engineer complex
orqamc/morqamc systems

NanoComposites

NanoStructures in Metals &
Ceramics Platform

Develop fundamental structure-
property relationships to design
novel structural materials

ODS Alloys

Ceramics Platform
Leverage biomimetic syntheses
to produce high toughness,
high T structural ceramics

Thermal Spray

Soft Lithography, Micro-casting

Field Induced, Sol-gl

(1-10 pm)

Surfactant / Polymer Based Synthesis
(~10 nm)

Broad Based Materials Foundation




(3 cE Gloval Research  Nanostructured Metallic Systems

Develop fundamental structure-property relationship to design nanostructural materials &
coatings with superior properties
Nano grains

Nanolayers

SEEIEEE, Structure-stability

. -

Toughness
#Strength Corrosion

/7
Cost > Create & control nanostructures

Conductivity

> Stabilize structures
Dampening

» Optimize structures for properties

Oxidation Friction
Magnetic

Opportunities for exceptional stability & strength enhancement in metallic materials



@ GE Global Research Strengthening Mechanisms

Effect of Microstructural Scale Effect of Dispersoid Reinforcement

particle
strengthening calculation

Conventional . Nano
Marerials™ " Materials

Theoretical
Prediction
Dislocation source &rai
saturation -

Dislocation ﬁ b
Dominated :
A. j.'l () |r|-||u.Il

Nano-
dispersoids

NS~———

0 100 200 300 400 500 600
Mean planar interparticle spacing, nm

o =
e
on
2 | 7 I
|

]
-'M

1300 100 50 D (grain size) 12
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Order of magnitude increase in

strength over micron size predicted

Issues: e Dislocation source saturation at nano-scale

e Competition between strengthening from nano-scale
vs. weakening by gb sliding

e Thermal stability
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Strengthening Mechanisms: Dislocation Pile-up Model

Large h (A/2)

AAara

h> 50 nm

S

subsirate

Hall-Petch behavior - dislocation
pile-ups at interface

* Large grains: many dislocations in pile-up = continuum
theory of Hall-Petch works (c « d-'/2)

« Small grains: question is how many dislocations in pile-up?

Small h (\/2)

Misfit dislocations
in multilayers

C (W |
) ) ) e

co ) ) ) h<Sonm[|
x (|

substrate

Leaves misfit
dislocations at interface

Plastic flow by single dislocations
moving by bowing within layers



@ GE Global Research Effect of Dispersoid Reinforcement: Strengthening
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Issues:
* Thermally assisted climb at high Ts
* Microstructural stability at high Ts and high stresses

» Dispersoid volume fraction:  Tradeoff for strengthening vs. ductility ?
What is needed for wear resistance?




@ GE Global Research Dispersoid Reinforcement - Grain Boundary Pinning

Grain Size (D) vs. Mean Free Path (A)
Between 2" Phase Particles (d

Zener Pinning

Ref: Movchan

Issues:
* Microstructural stability at high Ts and high stresses

» Dispersoid volume fraction: Tradeoff for strengthening vs. ductility ? What is needed
for wear resistance?




(%9 GE Global Research year of Dispersoid Structures: Microstructural Effects

Dispersoid Structures

Metal
Nano strengthening mechanisms can be

used to leverage superior wear properties Ceramic
while retaining higher toughness

7 X reduction in wear by reducing

Wear =f (H, K_) 1 from 0.4 to 0.15 microns

H = Hardness: f(A-12)

K. = Fracture toughness: f(A/d) Schematic
» Higher hardness through lower mean -~

free spacing A

-— ~ -
Micron Regime

» Better toughness through fine particle
size d, and d/A ratio

High wear resistance and toughness obtained by dispersoid structure




@ GE Global Research Nanostructured Pure Metals: Background

 Strength (nanocrystalline metals) >> Strength (conv. metals)
* Ductility (nanocrystalline metals) << Strength (conv. metals)

* Hardness & wear resistance = strong function of gs
* Modulus & thermal expansion = mostly grain-size independent
» Softening at ~ 5-50 nm grain size due to grain boundary sliding + diffusional creep

* Properties = strong function of processing

8

2
r;!;
[
:
H

—r— 40 nm
—t— [ om

Sanders et al., 1997 —— M ym

-I-I—l—l—l—l—l—...l__n_.l_l_l_l_l_l_.
0. s 00z

Engineering Strain

Vickers Hardness (Kg/mm?)
s88568388%




@ GE Global Research  Multilayer Strengthening: Background

= Large spacings: Hall-Petch behavior (Dislocation pile-up model)
= Low spacings: individual dislocation motion in layers
= Very low spacings: superlattice strength (>> harder component)

TiN/VN CulAg

YIELD STRENGTH

N
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a
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=
>

Miscible
Same structure

10 20 30 40

- Metal/ceramic multilayers show good combination of toughness + hardness
=> wear application
 Significant strengthening observed in nanolayered structures




( ) GE Global Research g, 1ymary of Mechanisms at Nano-Scale
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Dispersed Structures

Layered Structures

Mechanisms/Factors

Strength

Creep

Thermal

Stability | Strength

Thermal

Creep | Stability

Parameters

Dislocation-particle interaction (Orowan
effect, attachment, detachment, shear)

Y

Particle size,
spacing,distribution

GB-particle interaction (Zener pinning)

Particle size,
spacing,distribution

Hall-Petch effect (Dislocation-boundary
interaction)

Matrix grain size
Nlayer spacing

Grain boundary sliding

Matrix grain size &
aspect ratio

Microstructural Evolution

Thermolkinetics

Interfacial energy

Dislocation sources & generation
stresses

Matrix grain size
llayer spacing

Dislocation substructure

Matrix grain size

Koehler Stress or Image Stress

Modulus mismatch

Interface coherency

Crystallographic
mismatch

GB segregation of solutes & particles

Misciblity

Solubilty/diffusivity/
Thermodynamics

GOAL: Differentiate mechanisms giving rise to unique properties



@ GE Global Research — stapility & Structure-Property Understanding

Stability Atomistics Mechanical Behavior

Predictive tool Strengthening
development mechanism prediction &

fundamental quantities

* Phase Field « Embedded Atom Method * Analytical
* Analytical - Analytical * Numerical

Deformation behavior
understanding

3 Grain growth § Interfacial strength
§ Nano-structural effects on

Alloying effects on , .
3 ying § Dislocation-interface deformation behavior

stability ; . ,

interaction mechanisms ] )
§ Thermal stability of Ny § HT creep mechanisms in
layered structures S Exptl. validation nanostructures

§ Exptl. validation

Modeling across multiple-length scales for structure-to-property
understanding in metallic nanostructures




@ GE Global Research Model Material Systems

Dispersed Multilayers

Structural Metal/Metal
Alloys Metal/Ceramics

Functional
Coatings

Create
nanostructures

Scaleable,

- ili
Bulk Processes Structure-stability

-property fundamentals
Physical Vapor Deposition

Casting, Powder processing,
Deformation processing

Produce controlled & tailored systems for structure-property understanding
Learn what controls grain growth; high T stability; gb sliding




(%) GE Global Research Cast Oxide Dispersion Strengthened (ODS) Alloys

Objective: Develop technology for dispersion of nano oxides in molten metal castings.

.

Opportunity
» Lower cost
 Higher strength
* Higher T capability

=
giﬁ:

Pro

Technical Barriers:
Wettability & reactivity at particle/matrix interface
*Dispersion, initially and during solidification

Power feedstock Melt and Solidified gt!ng

Dispersion Technologies
» Coatings
* Active Elements

M. Larsen

Agglomerated n-yttria + detached n-oxides

Coat feedstock

Initial results showed some wetting and dispersion of nano-oxides in molten metal
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Bulk Amorphous
Phase
*Non-crystalline
*Isotropic

*No segregation
*Producible in bulk
by conventional
methods

'_t.-.-.l }

Heat
+ Treat =

Powder

% i Deposition,

‘ Consolidation

*High Strength

*Corrosion Resistant

*Damage tolerant

Amorphous-Induced Nanocrystalline Materials

Nanostructured Fe-Based Materials
Nano-crystalline
Materials
*Ultra-fine grains
*Uniform distribution
*Nano-particles
*Varieties of
primary/second
phases possible

TR

Amorphous
structure

—— ] ] 1]
WC-
Co
Conv.
Fe-
alloy
500 550 600 650

SPa)

Hardness (€

[y |

0

A5-5pUN
Heat Treatment Temperature (°C for 1 hour)

Nanostructures created in Fe-based alloys exhibit hardness 4x conventional alloys




@ GE Global Research Layered Structures by PVD
(50nm Cu/50nm Mo) x 50

(100nm Cu/50nm Mo) x 50

« Controlled nanolayer systems can be fabricated by PVD
- Experiments planned to study variables affecting strength in layered systems




(4¢) GE Global Research ¢, /10 Sputtered Nanocomposite Multilayers

- Cu-Mo Room Temperature Microhardness
60
£
'(\:n 50
<
w 40
0
£ 30
o
S 20
i
N
Y Mo Cu-Mo ML Cu-Mo ML
0.030" 0.020" as-dep  800°C HT]

A
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e &

Need predictive model

i ':; i, TR IORR for thermal stability
ermal S w from microstructural
| grooving = ]
i of GB z = variables
Stability Diagrams

Ratio{GBE/l nterfacial E}

« Significant increase in hardness demonstrated in nano multilayers
» ~60% drop in strength for unstable spherodized structure




(’ %; GE Global Research  Progress on ML stability : Kinetics of grooving

800°C l. y i " v
Thermal stability of Multilayers :
=>» Instability mechanism: thermal grooving

Kinetic Model:

Evolution of groove depth ‘d ’ with time ‘t’ : EEEXOIETDICOREN I il;t Ve g1

For a (50 nm/50 nm) Cu-Mo multilayer, time
taken for grooving :

T=800°C - time ~ 0.006 h
T=500°C = time ~0.16 h
T=300°C - time ~12h

*HT & TEM to determine groove angle in Cu-Mo multilayers
*Refinement of kinetics model needed




(%) GE Global Research  p¢omistic Modeling — Barrier Strength in Multilayers
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GOAL: Prediction of strength in nanolayered structures




(%) GE Global Research Vapor Deposited ODS Nanocomposites

200 §

Vickers Hardness

600 800
Test temperature (°C)

1000 1200

 Nano ODS structures over 2 times harder than
conventional ODS structures

* Nano ODS stronger than conventional ODS at
all temperatures




@ GE Global Research Vapor Deposited ODS Nanocomposites
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Nano ODS has ~2-3x greater hardness (strength) than conventional material
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Mechanically Alloyed Nano-Al
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y ' ' - <450 C/dh
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Early stages of understanding of potential stability mechanisms in Nano-Al




@ GE Global Research Multiscale Modeling: Phase-field Approach

Experimental structure
Micron and nano scales
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Phase-field approach is applicable at micron and nano size scales




(%) GE Global Research Thermal Stability— Microstructural Evolution Modeling

] * How much of second phase (V)
Thermodynamics

Diffusion * Size (dp)
Strain energy * Shape
Surface Energy » Crystal structure & orientation relationship

Morphology « Stability

Initial modeling efforts: Ni @ 800 °C

(S

3

° >0 Grain Growth
N 40 Retardation
“:’ (schematic)
s30 /N
O | T

20 ‘ ‘
0 500 1000 1500

Time ( Seconds )

Grain growth model in place for predicting thermal stability of nano-structures
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Grain growth in pure Ni:

Model vs. Validation

Grain Size
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Model solute

Diffusivity = 72 ( self diffusion of Ni )
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Thermal Stability— Microstructural Evolution Modeling

1 =5000:

Norm. time = 5000 (0.3 s)

-"- “."!.
S "o":-.. S
1!'.
S/

30

Norm. tlme 400 (0 02 s)

Solute Segregation (at%)

7=0: Grain=5% GB=5%
1 =400: Grain~1% GB~16 %
Grain~3 % GB=~18 %

.M ’ “

100 IED

wil

Model predicts significant grain growth retardation with 20% solute at gb
Experimental validation planned with PVD structures




(%) GE Global Research  year of Dispersoid Structures: Microstructural Effects

Wear resistance = f (H, K, ) N

H = Hardness: f(A-1/2)
K. = Fracture toughness: f(A/d)

Ceramic

Crack Length vs Indentation Load

Crack Length (Microns

: : . 4 ¢
3_, e

- i A I 55
41502 Nanomyle 3aF POST HT fract il 6863316 10K% SV

SEM of Fracture surface

Indentation Load {Kg)

High wear resistance and toughness obtained by nanostructured coatings
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Explore Dispersed Multilayers
stability &
strength in Structural MetallMetal
materials with Alloys MetaliCeramics
bro.ad-b ased Functional
impact Coatings

Structural

Nano-
= magnets

Beyond
Wear
structural coatings
applications??

Erosion
coatings



(%9 GE Global Research Napnocomposites - Breaking Design Limitations
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magnets
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— \
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Tribology

Transportation Syster
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